
Software Testing and Quality
Assurance

1

Lecture 2:
Introduction to Software Testing II

Dr. Jameleddine HASSINE
ICS Department, KFUPM
jhassine@kfupm.edu.sa

Outline
y Validation & Verification
y Static Analysis
Ń Inspection
Ń Walkthroughs
Ń Reviews

y Testing vs. Debugging vs. Quality Assurance
y Testing Taxonomy
Ń Fault
Ń Error
Ń Failure

y Observability and Controllability
y Test Coverage Criteria

2

Validation & Verification (V &V) Process

y V & V takes place at each phase of software
development life cycle.
Ń Requirements
Ń Design
Ń Code

y Has two principal objectives
Ń The discovery of defects in a system.
Ń The assessment of whether or not the system

is useful and useable in an operational
situation.

3

Validation
Are we building the right product?
(Latin validus - healthy, sound, effective)

y The process of evaluating a system during
and at the end of the development
process to ensure compliance with
intended usage (IEEE)

y The software should do what the user
really requires.

4

Verification

Are we building the product right?
(Latin veritas - truth or integrity)

y The process of determining whether the
products of a given phase of the software
development process fulfill the
requirements established during the
previous phase (IEEE)

y The software should conform to its
specification.

5

Validation & Verification
y Verification is usually a more technical

activity that uses knowledge about the
individual software artifacts, requirements,
and specifications

y Validation usually depends on domain
knowledge, that is the knowledge of the
application for which the software is
written. For example, the validation of “an
airplane” requires knowledge from
aerospace engineers and pilots.

6

V & V goals
y Ultimate goal
Ń Software is ‘fit for the purpose’.

y Software is not necessarily 100 % free of
defects.

y Rather, it must be good enough
Ń for its intended use; and
Ń the type of use will determine the degree of

confidence that is needed.

7

Independent V & V (IV&V)
y Process by which V&V is carried out by an organization that

is neither the developer or the acquirer of the software
y Three types of Independence:
1. Managerial independence
Ń Separate decision on which areas of the software to analyze and test

and which techniques to use

Ń Determines the schedule of tasks

2. Financial independence
Ń Costs for V&V are funded separately

Ń No risk of diverting resources that may cause delays

3. Technical independence
Ń Different from the developers or analysts

Ń Use of different tools

8

V & V Confidence
y Depends on system’s purpose, user expectations

and marketing environment
Ń Software function
x The level of confidence depends on how critical the

software is to an organization.
Ń User expectations
x Users may have low expectations of certain kinds of

software.
Ń Marketing environment
x Getting a product to market early may be more

important than finding defects in the program.

9

V & V approaches
Within the V & V process, there are two complementary
approaches to system analysis:
y Software Inspections, Reviews and Walkthroughs
(Static analysis)
y Software Testing: Testing by executing the program with

real inputs and observing its behavior (Dynamic analysis)

10

Formal
specification

High-level
design

Requirements
specification

Detailed
design Program

Prototype Dynamic
validation

Static
verification

Static Analysis
y Testing without executing the program
Ń This include inspections, reviews and walkthroughs, and some forms

of analysis
Ń Concerned with analysis of the static system representation to

discover problems.
Ń Review the documents and software system during different phases

of development life-cycle.

Ń Very effective at finding certain kinds of problems – especially
“potential” faults, that is, problems that could lead to faults when the
program is modified

Ń Usually more cost-effective than testing for defect detection at the
unit and module level

Ń Allows defect detection to be combined with other quality checks
Ń More than 60% of program errors can be detected by informal

program inspections

y Supplement by tool-based document and code analysis.

11

Agent47

Agent47

Agent47

Agent47

Agent47

Static Analysis Checks
Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

Agent47

Agent47

Agent47

Agent47

Agent47

About Meetings

y “Walkthroughs, Reviews and Inspections”
are a form of human-based testing that
involves people working together
cooperatively.

y We begin with a few basic axioms regarding
meetings…

13

Agent47

The Safety Axiom

y First, as we all know, meetings can be terrible…

Ń Ever been to a really BAD meeting?

y In order for meetings to be effective, they need
to be made safe…

Ń safe to attend, and safe NOT to attend.

14

Agent47

Agent47

Agent47

Making Meetings Safe

y One way to accomplish this, is to remove the
uncertainty about what might be covered in a
meeting:
Ń Publish an agenda and stick to it.
Ń Handle “emergency issues” in a way that will not

hurt people who don’t attend the meeting.
Ń Be sure people who should attend are identified

and explicitly invited in advance.
Ń Gently confront those present who should not

attend – preferably before the meeting starts.

15

Agent47

Agent47

Agent47

Agent47

Making Meetings Safe (cont’d)

y Establish ground rules for the conduct of
meetings:
Ń Establish a no-interruption policy, but also set

time limits for individual speakers so that
everyone will be able to participate.
Ń Outlaw personal attacks and put-downs.
Ń Finish on time, but schedule a continuation of

the meeting if business isn’t finished.
Ń Use a related issues list and ensure follow-up

for important off-topic matters that come up.

16

Agent47

Agent47

Agent47

Agent47

Agent47

Other Meeting Axioms

y Meetings should be as small as possible, but
no smaller.

y Keep the agenda short. (A meeting that tries
to do too many things does none well.)

y Design meetings to have the appropriate
structure and pace.

y Identify someone to act as a facilitator.
y Be prepared! (95% of meetings that fail do so

because of inadequate preparation.)

17

Agent47

Agent47

Agent47

Agent47

Walkthroughs

y Usually done in a single meeting.
y Evaluate a software product to
Ń Find anomalies & improve the software product.
Ń Consider alternative implementations (at a detailed low-level).
Ń Evaluate the conformance to standards and specifications .

y Rather informal.
y No formal training required beforehand.
y Success depends on experience and skills of the team

members.
y Can be performed at any phase of the software

development process.
y Can be performed on any artifact (SRS, Use Case

Diagrams, Class diagrams, test cases, etc.)

18

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Software Inspection
y Checklist-based formal approach to uncover errors.
y Intended explicitly for defect detection (not correction).
y Defects may be logical errors & anomalies in the code. For

example:
Ń An un-initialized variable.
Ń Non-compliance with standards.

y Team members require formal training beforehand.
y Remove errors as near source as possible; hence reducing costs

of rework.
y Its success depends on
Ń The properness of the inspection process application,
Ń Checks applied;
Ń The diligence of the inspectors.

y Can be performed at any phase of the software development
process

y Can be performed on any artifact (SRS, UC Diagrams, Class
diagrams, test cases, etc.)

19

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

MohammedFadin

20

1. Actors
1.1. Are there any actors that are not defined in the use case model, that is, will
the system communicate with any other systems, hardware or human users that
have not been described?
1.2. Are there any superfluous actors in the use case model, that is, human users
or other systems that will not provide input to or receive output from the system?
1.3. Are all the actors clearly described, and do you agree with the descriptions?
1.4. Is it clear which actors are involved in which use cases, and can this be
clearly seen from the use case diagram and textual descriptions? Are all the actors
connected to the right use cases?

2. The use cases
2.1. Is there any missing functionality, that is, do the actors have goals that must
be fulfilled, but that have not been described in use cases?
2.2. Are there any superfluous use cases, that is, use cases that are outside the
boundary of the system, do not lead to the fulfillment of a goal for an actor or
duplicate functionality described in other use cases?
2.3. Do all the use cases lead to the fulfillment of exactly one goal for an actor, and
is it clear from the use case name what is the goal?
2.4. Are the descriptions of how the actor interacts with the system in the use
cases consistent with the description of the actor?
2.5. Is it clear from the descriptions of the use cases how the goals are reached
and do you agree with the descriptions?

Example1: Checklist for inspections of Use Case models

Example 1: Checklist for inspections of Use Case model

21

3. The description of each use case
3.1. Is expected input and output correctly defined in each use case; is the output
from the system defined for every input from the actor, both for normal flow of
events and variations?
3.2. Does each event in the normal flow of events relate to the goal of its use
case?
3.3. Is the flow of events described with concrete terms and measurable concepts
and is it described at a suitable level of detail without details that restrict the user
interface or the design of the system?
3.4. Are there any variants to the normal flow of events that have not been
identified in the use cases, that is, are there any missing variations?
3.5. Are the triggers, starting conditions, for each use case described at the correct
level of detail?
3.6. Are the pre- and post-conditions correctly described for all use cases, that is,
are they described with the correct level of detail, do the pre- and post conditions
match for each of the use cases and are they testable?

4. Relation between the use cases:
4.1. Do the use case diagram and the textual descriptions match?
4.2. Has the include-relation been used to factor out common behavior?
4.3. Does the behavior of a use case conflict with the behavior of other use cases?
4.4. Are all the use cases described at the same level of detail?

Example2: Code Inspection Checklist

22

1. Variable, Attribute, and Constant Declaration Defects
Are descriptive variable and constant names used in accord with naming
conventions?
Are there variables or attributes with confusingly similar names?
Is every variable and attribute properly initialized?
Could any non-local variables be made local?
Are there literal constants that should be named constants?
Are there variables or attributes that should be constants?
Are there attributes that should be local variables?
Do all attributes have appropriate access modifiers (private, protected, public)?
Are there static attributes that should be non-static or vice-versa?

2. Method Definition Defects
Are descriptive method names used in accord with naming conventions?
Do all methods have appropriate access modifiers (private, protected, public)?
Are there static methods that should be non-static or vice-versa?

3. Class Definition Defects
Does each class have appropriate constructors?
Do any subclasses have common members that should be in the superclass?

Example2: Code Inspection Checklist

23

4. Computation/Numeric Defects
Are there any computations with mixed data types?
Are parentheses used to avoid ambiguity?

5. Comment Defects
Does every method, class, and file have an appropriate header comment?
Does every attribute, variable, and constant declaration have a comment?
Is the underlying behavior of each method and class expressed in plain language?
Is the header comment for each method and class consistent with the behavior of
the method or class?
Do the comments and code agree?
Do the comments help in understanding the code?
Are there enough comments in the code?
Are there too many comments in the code?

6. Layout and Packaging Defects
Is a standard indentation and layout format used consistently?
For each method: Is it no more than about 60 lines long?

7. Modularity Defects (MO)
Are the Java/C# class libraries used where and when appropriate?
Are there libraries imported but not used in a given class?

Activity:
Inspection of Sums Of Perfect Powers

A non-negative integer n is said to be a sum of two
perfect powers if there exist two non-negative
integers a and b such that:
am + bk = n
for some positive integers m and k, both greater than 1.
Given two non-negative integers
lowerBound and upperBound, return the number of
integers between lowerBound and upperBound,
inclusive, that are sums of two perfect powers.
lowerBound will be between 0 and 5000000, inclusive.
upperBound will be between lowerBound and 5000000,
inclusive.

24

import java.util.ArrayList;
public class SumsOfPerfectPowers {
ArrayList<Long> numList = new ArrayList<Long>(5000001);
// status of whether a number is power number
boolean[] result = new boolean[5000001];
public SumsOfPerfectPowers() {

numList.add((long) 0);
numList.add((long) 1);
for (int i = 2; i <= 2237; i++) {

int j = 2;
double value;
while ((value = Math.pow(i, j)) <= 5000000) {

numList.add((long) value);
j++; }

}
int len = numList.size();
int value;
for (int i = 0; i < len; i++) {

for (int j = 0; j < len; j++) {
value = (int) (numList.get(i) + numList.get(j));
if (value <= 5000001) {

result[value] = true; }
}

}
}

25

public int howMany(int a, int b) {
int sum = 0;
for (int i=a; i<=b; i++) {

if (result[i]) {
sum ++;

}
}

return sum;
}
public static void main(String[] args) {
SumsOfPerfectPowers test = new SumsOfPerfectPowers();
System.out.println(test.howMany(0, 1));
System.out.println(test.howMany(5, 6));
System.out.println(test.howMany(25, 30));
System.out.println(test.howMany(103, 103));
System.out.println(test.howMany(1, 100000));

}
}

26

1) Comments are missing.
2) Access modifiers of numList and result should be private:
private ArrayList<Long> numList = new ArrayList<Long>(5000001);
private boolean[] result = new boolean[5000001];
3) ArrayList<…> reference types should be simply List<…>
private List<Long> numList = new ArrayList<Long>(5000001);

4) 5000001 is a magic number. Use named constants instead of numbers
like 50000 and 2237. This would make the code more readable and less
fragile.
private static final int MAX = 5000000;
and use it everywhere, for example:
private boolean[] result = new boolean[MAX + 1];
As per 2237 you use the following:
final int maxSquare = (int) Math.ceil(Math.sqrt(MAX));
for (int i = 2; i <= maxSquare; i++) { ... }

27

Some found issues

5) numList only used in the constructor, so it could be a local
variable there instead of a field. Try to minimize the scope of
variables.

6) The variable value is used as int and as double.
7) Actually, rename numList to perfectPowers since it stores perfect
powers.
8) In the first for loop, rename i to base and j to exponent.

9) Rename the parameters of the howMany method to lowerBound
and upperBound.

10) The initial capacity of the list to 50000001
while it contains only about 2500 elements.
It's a huge memory waste. Use the default constructor of
the ArrayList which uses less memory.
final List<Long> perfectPowers = new ArrayList<Long>();

28

Some found issues

Inspection Metrics
Many different metrics can be calculated during
an inspection process:
y The number of major and minor defects found
y The number of major defects found to total

found
y Total Defects Found: A + B – C
A=defects found by inspector 1,
B=defects found by inspector 2,
C=common defects found by 1 & 2
y Defect Density: Total Defects Found / Size
size=total number of pages or lines of code or
some other measure

29

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Inspection Metrics (continue…)

y Inspection Rate:
Ń Size / Total Inspection Time

Total Inspection Time = the sum of the time of all
reviewers plus the total person time spent in each
meeting (e.g., 15 pages /hour).

y Defect Detection Rate:
Ń Total Defects Found / Total Inspection Time

30

Agent47

Agent47

Agent47

Agent47

Software Inspection Cost

31

Time

No. of Employees

Planning
Requirements

Design Coding

Testing

Without Inspection

With Inspection

Inspection teams

y Made up of at least 5 members
Ń Author of the code being inspected
Ń Reader who reads the code to the team
Ń Inspector who finds errors, omissions and

inconsistencies
Ń Moderator who chairs the meeting and notes

discovered errors
Ń Scribe taking notes on the inspection process

results

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Inspection pre-conditions

y A precise specification must be available
y Static testing team members must be

familiar with the organization standards
y Syntactically correct code must be available
y An error checklist should be prepared
y Management must accept that inspection

will increase costs early in the software
process

Agent47

Agent47

Agent47

Agent47

Agent47

Inspection procedure
y System overview presented to inspection

team
y Code and associated documents are

distributed to inspection team in advance
y Inspection takes place and discovered errors

are noted
y Modifications are made to repair discovered

errors
y Re-inspection may or may not be required

Agent47

Agent47

Agent47

Agent47

Agent47

Inspection Process

35

Overview

Individual Planning

Inspection Meeting

Rework

Follow-up

The Inspection Process
1. Overview (whole team)

Ń What will be inspected?

Ń Why are we spending time inspecting such artifact?

Ń Designation of team roles.

2. Preparation (individual)

Ń ranked distributions of error types

Ń checklists of clues on finding errors
3. Inspection Meeting (whole team)

Ń a “reader” is chosen by the moderator
Ń every element of logic and every branch is considered
Ń objective is to find errors
Ń no specific solution hunting is permitted
Ń moderator prepares written report within one day

4. Rework (owner)

5. Follow-up (moderator)

Ń if > 5% of material has been reworked, the entire element is re-inspected

36

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

MohammedFadin

Inspecting Modified Code

y “Since most modifications are small...they are
often erroneously regarded as trivially simple
and handled accordingly; ...However, all
modifications are well worth inspecting...”

y “Human tendency is to consider the ‘fix,’ or
correction, to a problem to be error-free itself.
...The number of bad fixes can be reduced by
some simple inspection after clean compilation
of the fix.”

37

Agent47

Agent47

Agent47

Inspections vs. Walkthroughs
y Inspections differ significantly from walkthroughs.
y An inspection is a five-step, formalized process. The

inspection team uses the checklist approach for
uncovering errors. A walkthrough is less formal, has
fewer steps, and does not use a checklist to guide
or a written report to document the team’s work.

y Although the inspection process takes much longer
than a walkthrough, the extra time is justified
because an inspection is extremely effective for
detecting faults early in the development process
when they are easiest and least costly to correct

38

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

Agent47

39

Inspections vs.Walkthroughs

Properties Inspections Walkthroughs

Formal moderator training Yes No

Definite participant roles Yes No

Who “drives” the process Moderator Owner

Use checklists? Yes No

Formal follow-up Yes No

Rigor level Formal Informal

40

Inspections and Walkthroughs vs. Reviews

y Inspections and walkthroughs concentrate on assessing
correctness

y A review is also an informal process (no formal
training beforehand). Success depends on the skills
and the experience of the reviewers.

y Reviews seeks to ascertain that tolerable levels of
quality are being attained.

y The review team is more concerned with design
deficiencies and deviations from the conceptual model
and requirements.

y Reviews do not focus on discovering technical flaws
but on ensuring that the design and development fully and
accurately address the needs of the application.

Agent47

Agent47

Agent47

Agent47

Agent47

Question?

y Which technique is more of a
validation process and which is
more of a verification process?
Ń Walkthroughs
Ń Inspections
Ń Reviews

41

Verification
Verification

Validation

Agent47

Agent47

Agent47

Dynamic Analysis

y Testing by executing the program with
real inputs and observing its behavior

42

Ultimate Goal of Testing
Ń Establishing confidence that a program DOES what

it is supposed to do.
Ń Establishing confidence that a program DOES

NOT do what it is NOT supposed to do.

43

Testing is not DEBUGGING

Testing is not Quality Assurance

Testing vs. Debugging
y Testing : The process of finding inputs that cause the software to fail

(by dynamically exercising a software)

y Debugging : The process of finding a fault given a failure

y Debugging involves:

Ń Locating the source code causing the bug

Ń Fixing the bug

y Debugging happens AFTER testing

y After debugging, MORE testing is required

y The debugging process:

44

Testing vs. Quality Assurance (QA)

y Testing is necessary but not enough for QA
process.
Ń Testing contributes to improve quality by helping

to identify problems.

y QA sets standards that project members
(including testers) should follow in order to
build a better software.

45

Testing Taxonomy (AMMANN and OFFUTT)

y Software Fault:
A static defect in the software

y Software Error:
An incorrect internal state that is the manifestation of some

fault

y Failure:
External, incorrect behavior with respect to the requirements

or other description of the expected behavior

46

Example
y Assume a program that uses the larger

value resulting from an addition function
and a square function

47

//…code……

r1 = add (a , b);

r2 = square (x) ;

//uses the larger of r1 and r2

//……rest of the code…

Example (cont‘d)

48

int square (int x){

if (x == 0)

return 0;

else

return x*2; fault

}

int add (int a, int b){

return a+b;

}

y The fault here is the
square of x was computed
as ‘x*2’ instead of ‘x*x’.

y A test case where the fault
will not get executed is
when ’x’ = 0.

y A test case where the fault
will be executed but will
not result in an error is if
‘x’ = 2.

Example (cont‘d)

49

int square (int x){

if (x == 0)

return 0;

else

return x*2; fault

}

int add (int a, int b){

return a+b;

}

y A test case where the
fault will be executed
and results in an error
that DOES NOT result
in a failure is when,
for example, ‘x’ = 3
and ‘a’ and ‘b’ = 20.

y A test case where an
error WILL result in a
failure is if for
example ‘x’ = 3 and ‘a’
and ‘b’ = 4.

Activity

Q1) Identify the fault

Q2) Indentify a test case that does not execute the fault.

Q3) Identify a test case that executes the fault but does not result in an
error.

Q4) Identify a test case that results in an error but does not lead to a
failure.

Q5) Identify a test case that results in a error which leads to a failure.
50

public int findLast (int [] x, int y){
//Effects: If x == null throw NullPointerException
// else return the index of the LAST element in x
// that equals y.
// if no such element exists, return -1
// Assume check for NullPointerException happens here

for (int i=x.length-1;i>0;i--){

if (x[i] == y){

return i;

}

}

return -1;

}

Exercise

Q1) Identify the fault

Answer: Counter setup in for loop is incorrect (i>0). Should be i>=0.

Q2) Indentify a test case that does not execute the fault.

Answer: x=null. Result expected is a NullPointerException thrown.

51

public int findLast (int [] x, int y){
//Effects: If x == null throw NullPointerException
// else return the index of the LAST element in x
// that equals y.
// if no such element exists, return -1
// Assume check for NullPointerException happens here

for (int i=x.length-1;i>0;i--){

if (x[i] == y){

return i;

}

}

return -1;

}

Q3) Identify a test case that executes the fault but does not result in an
error.

y Answer: For any input where y appears in the second or later position,
there is no error. Also, if x is empty, there is no error. x = [0, 1 ,2] and y= 2.
Expected result :is ‘2’.

Q4) Identify a test case that results in an error but does not lead to a
failure.

y Answer: For an input where y is not in x, the missing path (i.e. an incorrect
PC on the final loop that is not taken) is an error, but there is no failure. x =
[1 ,1 ,1] and y = 2. Expected result is ‘-1’.

52

public int findLast (int [] x, int y){

for (int i=x.length-1;i>0;i--){

if (x[i] == y){

return i;

}

}

return -1;

}

Exercise

Q5) Identify a test case that results in a error which leads
to a failure.
Answer: x = [2, 1 ,1] and y = 2. Result expected is ‘0’.

53

public int findLast (int [] x, int y){

for (int i=x.length-1;i>0;i--){
if (x[i] == y){

return i;
}

}
return -1;

}

Exercise

Types of Errors

y User interface error
y Boundary related errors
y Calculation/Data errors
y Initial and later state errors
y Control flow errors
y Errors handling
y Race conditions errors
y Load condition errors
y Hardware interfacing errors
y Documentation errors

54

55

Observability and Controllability
y Software Observability : How easy it is to observe the

behavior of a program in terms of its outputs, effects on the
environment and other hardware and software components
Ń Software that affects hardware devices, databases, or

remote files have low observability

y Software Controllability : How easy it is to provide a
program with the needed inputs, in terms of values,
operations, and behaviors
Ń Easy to control software with inputs from keyboards
Ń Inputs from hardware sensors or distributed software is

harder
Ń Data abstraction reduces controllability and observability

MohammedFadin
Controllability determines the work it takes to set up and run test cases and the extent to which individual functions and features of the system under test (SUT) can be made to respond to test cases.

56

Three conditions (RIP) necessary for a failure
to be observed

1. Reachability : The location or locations in the
program that contain the fault must be reached

2. Infection : The state of the program must be
incorrect

3. Propagation : The infected state must propagate
to cause some output of the program to be
incorrect

Inputs to affect controllability and observability

y Prefix Values:
Ń Any inputs necessary to put the software into

the appropriate state to receive the test case
values.

y Post-Fix Values:
Ń Any inputs that need to be sent to the

software after the test cases values.
Ń Two Types of postfix values
x Verification Values: Values necessary to see the

results of the test case values.
x Exit Commands: Values needed to terminate the

program or otherwise return it to a stable state.

57

Test Cases and Test Sets

y All types of test boil down to creating
test cases and executing them.

y Test Case: is composed of the test case
values, expected results, prefix values,
postfix values necessary for a complete
execution and evaluation of the software
under test.

y Test Sets: is simply a set of tests.

58

Test Coverage Criteria
y Define a model of the software, then find ways to

cover it.
y Test requirements: Specific things that must be

satisfied or covered during testing.
y Test criteria: A collection of rules and a process

that define test requirements.
y Coverage: Given a set of test requirements TR for

a coverage criterion C, a test set T satisfies C if and
only if for every test requirement tr in TR, at least
one test t in T exists such that t satisfies tr.

y Coverage level: Given a set of test requirements
TR and a test set T, the coverage level is simply the
ratio of the number of test requirements satisfied
by T and the size of TR.

59

MohammedFadin
Test coverage measures the amount of testing performed by a set of test. Wherever we can count things and can tell whether or not each of those things has been tested by some test, then we can measure coverage and is known as test coverage.

The basic coverage measure is where the ‘coverage item’ is whatever we have been able to count and see whether a test has exercised or used this item.

Test Coverage Criteria Example

60

Player 1 Player 2 Player 3 Player 4

Coverage Criteria Example (cont’d)
y Coverage Criteria requires each patch of the

field to be covered by a player’s route.
y Therefore there will be a test requirement

for each patch of the field to be covered at
least once (13 x 4 = 52).

y What is the coverage level if:
Ń Only player 1 ran? (Answer = 16/52Æ 30.7%)
Ń Only players 2 and 3 ran? (Answer = 27/52 Æ

51.9%)
Ń Only players 1 and 3 ran? (Answer = 30/52 Æ

57.6%)
Ń All players ran? (Answer = 42/52 Æ 80.7%)

61

